
REACTIONS OF THE DERIVATIVES OF 5,6-DIARYL-2,5-DIHYDRO-1,2,4-TRIAZINES WITH DIMETHYL ACETYLENEDICARBOXYLATE ----STRUCTURAL REASSIGNMENTS OF THE PRODUCTS AND FURTHER OBSERVATIONS

Tadashi Sasaki, ^{*} Katsumaro Minamoto, and Katsuhiko Harada Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan

Abstract. The structures of the dihydro derivatives of 5,6-diary1-1,2,4-triazines and of the products from the title reactions have been reassigned as 5,6-diary1-2,5-dihydro-1,2,4-triazines (5a-g) and 2,6-diary1-4-methy1-5-substituted-1,8bis-methoxycarbony1-3,4,7-triaza-bicyclo[3.3.0]octa-2,7-dienes (7a-g), respectively.

In a previous communication¹, we have assigned the structures of the dihydro derivatives of 3-methoxy- (<u>1</u>a) and 3-methylthio-5,6-diphenyl-1,2,4-triazine (<u>1</u>b) as 4,5-dihydro-1,2,4-triazines (<u>2</u>a-b) mainly on the basis of the fact that their mono-methylated analogs (<u>3</u>a-b) gave the one to one adducts (<u>4</u>a-b) with dimethyl acetylenedicarboxylate (DMAD). The structures of <u>4</u>a-b were reasonably supported by their ¹HNMR-, ¹³CNMR- and UV-spectra. Since, more recently, compounds <u>4</u>a-b proved to resist thermal decomposition with nitrogen release, X-ray analysis for compound <u>4</u>b as well as <u>3</u>b was conducted by T. Ashida's group² to disclose a new synthesis of a nitrogen-containing heterocyclic system. This communication involves the correction of the structures of <u>3</u> (and hence of <u>2</u>) and <u>4</u> with further observations in a series of similar synthetic reactions.

On the basis of the X-ray analyses², the structures of <u>3b</u> and <u>4b</u> have been corrected to 3-methylthio-5,6-diphenyl-2,5-dihydro-1,2,4-triazine (<u>5b</u>) and 2,6diphenyl-4-methyl-5-methylthio-1,8-bis-methoxycarbonyl-3,4,7-triaza-bicyclo[3.3.0] octa-2,7-diene (<u>7b</u>), respectively. The skeletal identity of <u>5a</u> with <u>5b</u> and of <u>7a</u> with <u>7b</u> was firmly established in terms of chemical interrelation and spectral similarities.¹ The formation of <u>7a</u>-b from <u>5a</u>-b and DMAD can seemingly be explained as follows: the initially formed dipoles <u>6a</u>-b^{3a,4} lead to transient intermediates <u>6'a-b^{3b}</u>, which rearrange to <u>7a</u>-b as shown by the arrows, or the anionic carbon in <u>6</u> directly attacks the 6-position. At present, no deep-seated mech-

anism for this extensive reorganization is known. That the single epimer of $\underline{7}$ was obtained in every reaction does not always imply the concertedness of the reaction

In order to gain a possible foothold for the mechanisms of these intriguing reactions, we chose to examine influence by para-substituents on the phenyl groups upon the reactivity of the dihydrotriazines (5) as function of electronegativity of the substituents. For this purpose, new dihydrotriazines $5c-g^6$ were synthesized in like manners⁷ and submitted to similar reactions with 2 equiv DMAD at 110° in toluene to give analogous products (7c-g).⁸ The yields and physical constants of these products are given in Table I. The skeletal identity of these compounds are obvious from the coincidences of UV and NMR spectra of

Comp. No.	Yield(%) mp(°C)	Reaction Time(hr)	λmax nm(ε)	NMR(CDC1 ₃) ٥
7a	65 174-176	12	215(14800,infl) 296(10400) a	C_6 -H 5.49 CO_2 Me 3.67,3.73 OME 3.17or3.22
7b	55 155-156	6.5	225(12100,sh) 303(11900) a	$C_6 - H$ 5.68 $CO_2 Me$ 3.67,3.78 SMe 1.87
7c	59 185.5-187.5	16	217(20700,sh) 296(17900) b	C ₆ -H 5.46 CO ₂ Me 3.71,3.75 OMe 3.18or3.21
7 d	36 192-194	9	220(19200,sh) 304(13700) b	C ₆ -H 5.66 CO ₂ Me 3.70,3.87 SMe 1.87
7e	80 219-221	6	225(20200) 296(14100) b	C ₆ -H 5.44 CO ₂ Me 3.73,3.77 OMe 3.32
7 f	60 200-202	12	226(20200) 303(14600) Ъ	С ₆ -Н 5.63 СО ₂ Ме 3.7-3.8 SMe 1.87
7 g	22 152-154	60	221(24100) 300(15100) b	C ₆ -H 5.47 CO ₂ Me 3.73 OMe 3.17or3.22

Table I. Yields and Spectral Properties of Compounds 7a-g.

a, in MeOH. b, in 95%EtOH.

each 5-methylthio or 5-methoxy series.⁹ The yields and reaction times permit, regrettably, no reasoning of the reaction mechanism. In the case of $\underline{7}g$, a considerable amounts of intractable side products were observed. The new triaza heterocyclic compounds ($\underline{7}$) seem to be interesting precursors for synthesizing nitrogen-containing medium size macrocyclic rings. Further studies along this line are under way.

References and Notes

1. T. Sasaki, K. Minamoto, and K. Harada, <u>HETEROCYCLES</u>, <u>10</u>, 93 (1978).

- 2. The X-ray data will be published elsewhere in near future.
- 3. (a) Formations of such dipolar intermediates are well documented. For example see: R. M. Acheson, "Advances in Heterocyclic Chemistry", <u>1</u>, A. R. Katritzky, ed., Academic Press, 1963, p. 125.
 (b) For examples of stepwise additions of acetylenic compounds to form cyclo-

butenes, see: J. Bastide and O. Henri-Rousseau, "The chemistry of the carboncarbon triple bond", Part 1, S. Patai, ed., Wiley-Intersciences, 1978, p. 447

- 4. That the π-electron density of <u>1</u>a is largest at the 4-position has been shown by Dr. Esaki in this laboratory using the simple Hückel method. It is probably true even with the dihydrotriazine system <u>5</u>. DMAD is considered to attack 4-nitrogen from less hindered side to form reasonably <u>6</u>', in which 3methoxy and 5-aryl groups in the tetrahydrotriazine ring lie in the same side of the molecule.
- 5. A molecular model study for the rearrangement of the presumed intermediate <u>6</u>' have shown that bonding 6-carbon in the tetrahydrotriazine ring with one of the olefinic carbon atoms in the 4-membered ring requires an antara-process (dotted arrow). Thus, a $\mathbf{6}$ 2s + $\mathbf{6}$ 2s + $\mathbf{\pi}$ 2a process can easily constract <u>7</u> in which the bulky phenyl group exists in the same side with 5- and 1-substituents, but this process is symmetry-forbidden.
- 6. The melting points and Amax (95% EtOH) of 5c-g are as follows: 5c, 73.5-75.5°, 220 (17100, infl), 234 (13800, sh), 304 (9100); 5d, 125-126°, 220 (18100, infl), 235 (14100, sh), 310 (8000); 5e, 79-81°, 223 (17700, sh), 252 (9900, sh), 284 (8900, sh), 305 (11600); 5f, 90-91.5°, 225 (21600, infl), 245 (13800, sh), 282 (8300), 312 (11900); 5g, 71-73°, 222 (18800), 240 (15500, sh), 310 (9700).
- 7. The skeletal identities of 5c-g with their precursors were evidenced UV-spectroscopically.
- 8. The reactions were usually continued until the starting material disappeared.
- 9. The structural similarities of <u>7</u>a-g were also supported by their characteristic mass spectra.

(Received in Japan 21 January 1980)