
Tetrahehon Letters Vol. 21, pp 1529 - 1532 
OPergamon Press Ltd. 1980. Printed in Great Britain 

REACTIONS OF THE DERIVATIVES OF 5,6-DIARYL-2,5-DIHYDRO-1,2,4- 

TRIAZINES WTII DI!lETilYL ACETYLENEDICARBOXYLATE-STRUCTURAL 

RDASSIGNIIENTS OF THE PRODUCTS AND FURTHER OBSERVATIONS 

Tadashi Sasaki,* Katsumaro W.namoto, and Iiatsuhiko Harada 

Institute of Applied Organic Chemistry, Faculty of Engineering, 

Nagoya,University, Furo-cho, Chikusa-ku, Nagoya, Japan 

Abstract. The structures of the dihydro derivatives of 5,6-diaryl-1,2,4-triazines 
d f the products from the title reactions have been reassigned as 5 6-diaryl- 

?5-iihydro-1 2 4-triazines (5a-g) and 2 6-diaryl-4-methyl-S-substitutld-1,8- 
bjs-methoxyca~b~nyl-3,4,7-triaza-bicyclo~3.3.~]o~ta-2,7-dien~s (?a-g), respective- 
ly. 

In a previous communication', we have assigned the structures of the dihydro 

derivatives of 3-methoxy- (la) and 3-methylthio-5,6-diphenyl-1,2,4-triazine (l_b) 

as 4,5-dihydro-1,2,4-triazines (Za-b) mainly on the basis of the fact that their - 

mono-methylated analogs (?a-b) gave the one to one adducts (+a-b) with dimethyl 

acetylenedicarboxylate (DMAD), The structures of 4a-b were reasonably supported - 

by their 'IINMR-, l3 CNMR- and UV-spectra. Since, more recently, compounds 4a-b - 

proved to resist thermal decomposition with nitrogen release, X-ray analysis for 

compound ib as well as 3b was conducted by T. Ashida's group' to disclose a new - 

synthesis of a nitrogen-containing heterocyclic system. This communication in- 

volves the correction of the structures of 2 (and hence of 2) and 4 with further - - 

observations in a series of similar synthetic reactions. 

On the basis of the X-ray analyses‘, the structures of 3b and 4b have been - - 

corrected to 3-methylthio-5,6-diphenyl-2,5-dihydro-l,2,4-triazine (5-b) and 2,6- 

diphenyl-4-methyl-5-methylthio-l,8-bis-methoxycarbonyl-3,4,7-triaza-bicyclo[3.3.O] 

octa-2,7-diene (zb), respectively. The skeletal identity of Sa with 5b and of 7a - - 

with 7b was firmly established in terms of chemical interrelation and spectral - 

similarities. 
1 

The formation of 7a-b from Sa-b and DMAD can seemingly be explain- - - 

ed as follows: the initially formed dipoles 6a-b 3a,4 lead to transient inter- - 
3b 

mediates 6'a-b , - which rearrange to 7a-b as shown by the arrows, or the anionic 

carbon in 2 directly attacks the 6-position. At present, no deep-seated mech- 
1529 



Sa-g 

a, X=0; b, X=S 

+j!J$-+;;e~;~~;;; 

Me02C A _ 

6a-g COZMe C02Me 
. 

/ 
6_'a-g J 

a, X=0; Y=H 
b, X=S; Y=H 

e, X=0; Y=OMe 
f, X=S; Y=OMe 

c, X=0; Y=Me 
d, X=S; Y=Me 

g, x=0; Y=Cl 

anism for this extensive reorganization is known. That the single epimer of 7 was 

obtained in every reaction does not always imply the concertedness of the reaction 

In order to gain a possible foothold for the mechanisms of these intriguing 

reactions, we chose to examine influence by para-substituents on the phenyl 

groups upon the reactivity of the dihydrotriazines (5) as function of electro- 

negativity of the substituents. For this purpose, new dihydrotriazines 5c-g 6 - 

were synthesized in like manners 
7 

and submitted to similar reactions with 2 equiv 

DMAD at 110' in toluene to give analogous products (zc-g).' The yields and 

physical constants of these products are given in Table I. The skeletal identity 

of these compounds are obvious from the coincidences of UV and NMR spectra of 
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Table I. Yields and Spectral Properties of Compounds 7a-g. 

Camp. Yield(%) Reaction 

NO. mp (“cl Time(hr) 
Xmax rim(e)) NMR(CDC13) 6 

65 215(14800,infl) c6-1~ 5.49 

7a 12 3.67,3.73 
174-176 296(10400) a 

CO2bJe 

O?lE 3.170r3.22 

55 225(121OO,sh) C6-II 5.68 

7b 6.5 
155-156 303(11900) a 

C02Ve 3.67,3.78 

SVe 1.87 

59 217(207Oo,sh) C6-Fl 5.46 

7c 16 C02Ale 3.71,3.75 
185.5-187.5 296(17900) b OMe 3.180r3.21 

36 220(19200,sh) C6_JJ 5.66 

7d 9 3.70,3.87 
192-194 304(13700) b 

C02Me 

SMe 1.87 

80 225(20200) C6-H 5.44 

7e 6 3.73,3.77 
219-221 296(14100) b 

C02Me 

OMe 3.32 

60 226(20200) C6-H 5.63 

7f 12 3.7-3.8 
200-202 303(14600) b 

C0211e 

SMe 1.87 

22 221(24100) C6-JJ 5.47 

7g 60 
152-154 noO(lSlO0) b 

C02Me 3.73 

OMe 3.170r3.22 

a,in MeOH. b,in 95%EtOH. 

each 5-methylthio or 5-methoxy series. 
9 
The yields and reaction times permit, 

regrettably, no reasoning of the reaction mechanism. In the case of zg, a 

considerable amounts of intractable side products were observed. The new triaza 

heterocyclic compounds (7) seem to be interesting precursors for synthesizing 

nitrogen-containing medium size macrocyclic rings. Further studies along this 

line are under way. 
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That the X-electron density of la is largest at the 4-position has been - 
shown by Dr. Esaki in this laboratory using the simple Iiiickel method. It is 

probably true even with the dihydrotriazine system 5. WAD is considered to - 
attack 4-nitrogen from less hindered side to form reasonably h’, in which 3- 

methoxy and 5-aryl groups in the tetrahydrotriazine ring lie in the same side 

of the molecule. 

A m,olecldlar model study for the rearrangement of the presumed intermediate 6’ - 
have shown that bonding 6-carbon in the tetra!lydrotriazine ring with one of 

the olefinic carbon atoms in the 4-membered ring requires an antara-process 

(dotted arrow). Thus, a 62s + 62s + 7t2a process can easily constract 7 in - 
which the bulky phcnyl group exists in the same side with S- and l-substitu- 

ents, but this process is symmetry-forbidden. 

The melting points and hmax (95% EtOII) of 5c-g are as follows: S_c, 73.5- 

75,5O, 220 (17100, infl), 234 (13800, sh), JO4 (9100); zd, 125-126’, 220 

(18100, infl), 235 (14100, sh), 310 (8000); 5_e, 79-X1’, 223 (17700, sh), 252 

(9900, sh), 284 (8900, sh), 305 (11600); zf, 90-91.5’, 225 (21600, infl), 

245 (13800, sh), 282 (8300), 312 (11900); zg, 71-73’, 222 (18800)) 240 

(15500, sh) , 310 (9700). 

The skeletal identities of 5-c-g with their precursors were evidenced UV- 

spectroscopically. 

The reactions were usually continued until the starting material disappeared. 

The structural similarities of La-g were also supported by their character- 

istic mass spectra. 
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